A one-dimensional domain is discretized into N sub-domains of width Dx with node numbers i = 0, 1, 2, 3…………, N. If the time scale is discretized in steps of Dt, the forward-time and centered-space finite difference approximation at ith node and nth time step, for the partial differential equation \(\frac{{\partial v}}{{\partial t}} = \beta \frac{{{\partial ^2}v}}{{\partial {x^2}}}\) is

This question was previously asked in
GATE CE 2019 Official Paper: Shift 1
View all GATE CE Papers >
  1. \(\frac{{V_{i + 1}^{\left( {n + 1} \right)} - V_i^{\left( N \right)}}}{{{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{2{\rm{\Delta }}x}}} \right]\)
  2. \(\frac{{V_i^{\left( n \right)} - V_i^{\left( {n - 1} \right)}}}{{2{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{2{\rm{\Delta }}x}}} \right]\)
  3. \(\frac{{V_i^{\left( {n + 1} \right)} - V_i^{\left( n \right)}}}{{{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{{{\left( {{\rm{\Delta }}x} \right)}^2}}}} \right]\)
  4. \(\frac{{V_i^{\left( n \right)} - V_i^{\left( n \right)}}}{{{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{{{\left( {{\rm{\Delta }}x} \right)}^2}}}} \right]\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{V_i^{\left( {n + 1} \right)} - V_i^{\left( n \right)}}}{{{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{{{\left( {{\rm{\Delta }}x} \right)}^2}}}} \right]\)
Free
GATE CE 2023: Full Mock Test
8.5 K Users
65 Questions 100 Marks 180 Mins

Detailed Solution

Download Solution PDF

Explanation:

\(\frac{{\partial v}}{{\partial t}} = \beta \frac{{{\partial ^2}v}}{{\partial {x^2}}}\)

\(\frac{{\partial v}}{{\partial t}} = \frac{{V_i^{\left( {n + 1} \right)}V_i^{\left( n \right)}}}{{{\rm{\Delta }}t}}\) (using forward time finite difference approximation)

Also, \({f^{11}}\left( x \right) = \frac{{{\partial ^2}f}}{{d{x^2}}} = \frac{{f\left( {x + h} \right) - 2f\left( x \right) + f\left( {x - h} \right)}}{{{h^2}}}\) 

(Using centered space finite difference approximation)

\(\Rightarrow \frac{{{\partial ^2}v}}{{\partial {x^2}}} = \frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{{{\left( {{\rm{\Delta }}x} \right)}^2}}}\)

\(\therefore \frac{{\partial v}}{{\partial t}} = \beta \frac{{{\partial ^2}v}}{{\partial {x^2}}}\) can be represented as

\(\frac{{V_i^{\left( {n + 1} \right)} - V_i^{\left( n \right)}}}{{{\rm{\Delta }}t}} = \beta \left[ {\frac{{V_{i + 1}^{\left( n \right)} - 2V_i^{\left( n \right)} + V_{i - 1}^{\left( n \right)}}}{{{{\left( {{\rm{\Delta }}x} \right)}^2}}}} \right]\)

Latest GATE CE Updates

Last updated on Jan 8, 2025

-> The GATE CE Admit Card has been released on 7th January 2025. The examination will be conducted on 16th February 2025 in 2 shifts.

> The GATE CE 2025 Notification has been released on the GATE official website. 

-> Candidates with a B.Tech degree in Civil Engineering can appear for the GATE CE exam. 

-> Candidates preparing for the exam can refer to the GATE CE Preparation Tips to increase their chances of selection.

-> Candidates must attempt the GATE CE mock tests. Also, practice with GATE CE Previous Year Papers

More Partial Differential Equations Questions

More Differential Equations Questions

Get Free Access Now
Hot Links: all teen patti master teen patti real money app happy teen patti