Trigonometric Function MCQ Quiz - Objective Question with Answer for Trigonometric Function - Download Free PDF
Last updated on May 3, 2025
Latest Trigonometric Function MCQ Objective Questions
Trigonometric Function Question 1:
Find \(\rm \frac{dy}{dx}\), if y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)
Answer (Detailed Solution Below)
Trigonometric Function Question 1 Detailed Solution
Concept:
\(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)
\(\rm \frac{d(\tan^{-1} x)}{dx}= \frac{1}{1+x^2}\)
Calculation:
Given: y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)
\(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)
As we know that, \(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)
So, \(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)= tan-1 5x + tan-1 3x
Differentiating with respect to x, we get
\(\rm \frac{dy}{dx}=\frac{d(\tan^{-1} 5x)}{dx}+\frac{d(\tan^{-1} 3x)}{dx}\)
\(= \rm \frac{5}{1+(5x)^2}+\frac{3}{1+(3x)^2}\)
\(=\rm \frac{5}{1+25x^2}+\frac{3}{1+9x^2}\)
Trigonometric Function Question 2:
If \( y = \sin^2 \left( \cot^{-1} \sqrt{ \dfrac{1 + x}{1 - x} } \right) \) then \( \dfrac{ dy }{ dx } \) is
Answer (Detailed Solution Below)
Trigonometric Function Question 2 Detailed Solution
\( y = \sin^2 \left( \cot^{-1} \sqrt{ \dfrac{1 + x}{1 - x} } \right) \)
Let, \( \cot{\theta} = \sqrt{ \dfrac{1 + x}{1 - x} } \)
\( \cot^2{\theta} = \dfrac{1 + x}{1 - x} \)
\( \Rightarrow x = \dfrac{\cot^2{\theta} - 1}{\cot^2{\theta} + 1} = \dfrac{\cos^2{\theta} - \sin^2{\theta}}{\cos^2{\theta} + \sin^2{\theta}} = \cos{2\theta} \)
Now,
\( y = \sin^2{\theta} \)
\( \Rightarrow \dfrac{dy}{dx} = \dfrac{dy}{d(\theta)} \times \dfrac{d(\theta)}{dx} \)
\( \Rightarrow \dfrac{dy}{dx} = 2 \sin{\theta}\cos{\theta} \times \dfrac{-1}{2 \sin(2\theta)} \)
\( \Rightarrow \dfrac{dy}{dx} = \dfrac{-1}{2} \)
Trigonometric Function Question 3:
If \(\tan ^{-1}\left(\frac{2}{3^{-x}+1}\right)=\cot ^{-1}\left(\frac{3}{3^{x}+1}\right)\), then which one of the following is true ?
Answer (Detailed Solution Below)
Trigonometric Function Question 3 Detailed Solution
Concept:
Inverse Tangent and Cotangent Relationships:
- The inverse cotangent function can be written in terms of the inverse tangent function: cot-1 θ = (π/2) - tan-1 θ.
- This relationship is useful in simplifying equations involving both tan-1 and cot-1.
Calculation:
Given the equation:
tan-1 (2 / (3x + 1)) = cot-1 (3 / (3x + 1))
We use the identity cot-1 θ = (π/2) - tan-1 θ to rewrite the equation as:
tan-1 (2 / (3x + 1)) = (π/2) - tan-1 (3 / (3x + 1))
Taking the tangent of both sides:
(2 / (3x + 1)) = (3 / (3x + 1))
This leads to the contradictory equation:
2 = 3
Therefore, there is no solution to this equation.
Conclusion:
The correct answer is:
- Option (1): There is no real value of x satisfying the above equation.
Trigonometric Function Question 4:
If \(y=\sqrt{\sin ^{-1} x+y} \), then \(\frac{d y}{d x}=\) __________ (where x ∈ (0, 1))
Answer (Detailed Solution Below)
Trigonometric Function Question 4 Detailed Solution
Calculation
Given: \(y = \sqrt{\sin^{-1}x + y}\)
Squaring both sides:
⇒ \(y^2 = \sin^{-1}x + y\)
Differentiating both sides with respect to x:
⇒ \(2y \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} + \frac{dy}{dx}\)
⇒ \(2y \frac{dy}{dx} - \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}\)
⇒ \(\frac{dy}{dx}(2y - 1) = \frac{1}{\sqrt{1-x^2}}\)
⇒ \(\frac{dy}{dx} = \frac{1}{(2y-1)\sqrt{1-x^2}}\)
Hence option 1 is correct.
Trigonometric Function Question 5:
If \(y=\sqrt{\sin x+y}\) then find \(\frac{d y}{d x} \text { at } x=0, y=1\)
Answer (Detailed Solution Below)
Trigonometric Function Question 5 Detailed Solution
Calculation
\(y = \sqrt{\sin x + y}\)
⇒ \(y^2 = \sin x + y\)
⇒ \(2y \frac{dy}{dx} = \cos x + \frac{dy}{dx}\)
⇒ \(2y \frac{dy}{dx} - \frac{dy}{dx} = \cos x\)
⇒ \(\frac{dy}{dx} (2y - 1) = \cos x\)
⇒ \(\frac{dy}{dx} = \frac{\cos x}{2y - 1}\)
Substitute x = 0 and y = 1:
⇒ \(\frac{dy}{dx} = \frac{\cos(0)}{2(1) - 1}\)
⇒ \(\frac{dy}{dx} = \frac{1}{2 - 1}\)
⇒ \(\frac{dy}{dx} = \frac{1}{1}\)
⇒ \(\frac{dy}{dx} = 1\)
∴ \(\frac{dy}{dx} = 1\) at x = 0, y = 1
Hence option 2 is correct
Top Trigonometric Function MCQ Objective Questions
If y = tan (cot−1 x), then \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\) at x = 1 is equal to
Answer (Detailed Solution Below)
Trigonometric Function Question 6 Detailed Solution
Download Solution PDFConcept:
\({\cot ^{ - 1}}{\rm{x}} = {\rm{\;}}{\tan ^{ - 1}}\left( {\frac{1}{{\rm{x}}}} \right)\)
tan (tan-1 x) = x
Calculation:
Given:
y = tan (cot−1 x)
\( \Rightarrow {\rm{y}} = \tan \left[ {{{\tan }^{ - 1}}\left( {\frac{1}{{\rm{x}}}} \right)} \right]\)
⇒ y = 1/x (∵tan (tan-1 x) = x)
Differentiating with respect to x, we get
\(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {\rm{\;}} - \frac{1}{{{{\rm{x}}^2}}}\)
At x = 1
\(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \; - \frac{1}{1} = \; - 1\)
Differentiate \(\tan^{-1}\left [ \frac{5+x}{1-5x} \right ]\) with respect to x.
Answer (Detailed Solution Below)
Trigonometric Function Question 7 Detailed Solution
Download Solution PDFConcept:
- \(\tan^{-1}a \, +\, \tan^{-1}b=\tan^{-1}\left (\frac{a+b}{1-ab} \right )\) ----(1)
- da/dx = 0, where a is any constant
- \(\frac{d}{dx}\tan^{-1}x=\frac{1}{1+x^2}\) ----(2)
-
\(\frac{d}{dx}(a+b)=\frac{da}{dx}+\frac{db}{dx}\)
Calculation:
\(\frac{d}{dx}\tan^{-1}\left [ \frac{5+x}{1-5x} \right ]\)
\(\Rightarrow \frac{d}{dx}(\tan^{-1}5\, +\, \tan^{-1}x)\) [Using (1)]
\(\Rightarrow \frac{d}{dx}(\tan^{-1}5)\, +\, \frac{d}{dx}(\tan^{-1}x)\)
\(\Rightarrow 0+\frac{1}{1+x^2}\) [Using (2)]
\(\Rightarrow \frac{1}{1+x^2}\)
What is the value of
\( \frac{ \sin 33^\circ \cos 57^\circ + \sec 62^\circ \sin 28^\circ + \cos 33^\circ \sin 57^\circ + \rm cosec 62^\circ \cos 28^\circ}{\tan 15^\circ \tan 35^\circ \tan 60^\circ \tan 55^\circ \tan 75^\circ}\)
Answer (Detailed Solution Below)
Trigonometric Function Question 8 Detailed Solution
Download Solution PDFGiven:
? = \(\frac{ \sin 33^\circ \cos 57^\circ + \sec 62^\circ \sin 28^\circ + \cos 33^\circ \sin 57^\circ + \rm cosec 62^\circ \cos 28^\circ}{\tan 15^\circ \tan 35^\circ \tan 60^\circ \tan 55^\circ \tan 75^\circ}\)
Formula:
sin (90 - θ) = cos θ
tan (90 - θ) = cot θ
Calculation:
⇒ sin 33°. cos57° = sin(90° - 57°).cos57° = cos57°.cos57° = cos257°
⇒ sec 62°.sin28° = 1/cos 62° × sin 28° = sin (90° - 62°) × 1/cos 62°
= cos62° × 1/cos 62° = 1
⇒ cos33°. sin 57° = sin (90° - 33°) . sin 57° = sin257°
⇒ cosec 62°. cos 28° = cos 28° × 1/sin 62°
= cos 28° × 1/sin(90° - 28°)
= cos 28°/cos 28° = 1
⇒ tan 15°.tan 35°.tan 60°.tan 55°.tan 75° = (sin15°/cos15°) × (sin75°/cos75°) × (sin55°/cos55° ) × (sin35°/cos35°) × √3
= √3
Then,
⇒ ? = (cos257° + 1 + sin257° + 1)/√3
⇒ ? = 3/√3
⇒ ? = √3
∴ \(\frac{ \sin 33^\circ \cos 57^\circ + \sec 62^\circ \sin 28^\circ + \cos 33^\circ \sin 57^\circ + \rm cosec 62^\circ \cos 28^\circ}{\tan 15^\circ \tan 35^\circ \tan 60^\circ \tan 55^\circ \tan 75^\circ}\) = √3
Find \(\rm \frac{d(\sin xt)}{dt}\)
Answer (Detailed Solution Below)
Trigonometric Function Question 9 Detailed Solution
Download Solution PDFConcept:
Suppose that we have two functions f(x) and g(x) and they are both differentiable.
- Chain Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)
- Product Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right)} \right] = {\rm{\;f'}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right) + {\rm{f}}\left( {\rm{x}} \right){\rm{\;g'}}\left( {\rm{x}} \right)\)
Calculation:
We have to find the value of \(\rm \frac{d(\sin xt)}{dt}\)
\(\rm \frac{d(\sin xt)}{dt} = \frac{d(\sin xt)}{d(xt)} \times \frac{d(xt)}{dt}\\=\cos xt \times x\\=x \cos xt\)
If y = \(\rm \cos ^ {-1} \left(\frac {1 - x}{1 + x}\right)\), then find \(\rm\frac{dy}{dx}\).
Answer (Detailed Solution Below)
Trigonometric Function Question 10 Detailed Solution
Download Solution PDFConcept:
Derivatives of Trigonometric Functions:
\(\rm \frac{d}{dx}\sin x=\cos x\ \ \ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cos x=-\sin x\\ \frac{d}{dx}\tan x=\sec^2x\ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cot x=-\csc^2 x\\ \frac{d}{dx}\sec x=\tan x\sec x\ \ \ \ \frac{d}{dx}\csc x=-\cot x\csc x\)
Trigonometric Formulae:
\(\rm \sin 2x = \frac{2\tan x}{1+\tan^2x}\)
\(\rm \cos 2x = \frac{1-\tan^2x}{1+\tan^2x}\)
\(\rm \tan 2x = \frac{2\tan x}{1-\tan^2x}\)
Chain Rule of Derivatives:
- \(\rm \frac{d}{dx}f(g(x))=\frac{d}{d\ g(x)}f(g(x))\times \frac{d}{dx}g(x)\).
- \(\rm \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\).
Calculation:
We have y = \(\rm \cos ^ {-1} \left(\frac {1 - x}{1 + x}\right)\).
Let x = tan2 z.
∴ y = \(\rm \cos ^ {-1} \left(\frac {1 - \tan^2z}{1 + \tan^2z}\right)\) = cos-1 (cos 2z) = 2z.
Now, differentiating w.r.t. z, we get:
\(\rm\frac{dx}{dz}= \frac{d}{dz}\left(\tan^2z\right)=2\tan z\sec^2z\)
\(\rm\frac{dy}{dz}= \frac{d}{dz}(2z)=2\)
Using the chain rule of derivatives, we get:
\(\rm\frac{dy}{dx}= \frac{dy}{dz}\times\frac{dz}{dx}=\frac{2}{2\tan z\sec^2z}=\frac{1}{\tan z(1+\tan^2z)}=\frac{1}{\sqrt x(1+x)}\).
If y = \(\rm {\rm{\;}}\frac{{\left( {sinx - cosx} \right)}}{{sin2x}} \), find \(\rm \frac{{dy}}{{dx}}\)
Answer (Detailed Solution Below)
Trigonometric Function Question 11 Detailed Solution
Download Solution PDFConcept used:
Trigonometry formula
sin 2x = 2sin x cos x
Calculation:
y = \(\rm {\rm{\;}}\frac{{\left( {sinx - cosx} \right)}}{{sin2x}}\)
y = \(\rm \frac{{\left( {sinx - cosx} \right)}}{{2.sinx.cosx}}\)
⇒ y = \(\rm \frac{{sinx}}{{2.sinx.cosx}} - \;\frac{{cosx}}{{2.sinx.cosx}}\)
⇒ y = \(\rm \left( {\frac{1}{{2cosx}}} \right)\; - \left( {\frac{1}{{2sinx}}} \right)\)
⇒ y = \(\frac{1}{2}\) (secx - cosecx)
Differentiate both sides, we get
⇒ \(\rm \frac{{dy}}{{dx}} = \frac{1}{2}\left[ {\frac{{d\left( {secx} \right)}}{{dx}} - \frac{{d\left( {cosecx} \right)}}{{dx}}} \right]\)
⇒ \(\rm \frac{{dy}}{{dx}} = \frac{1}{2}\left( {secx.tanx + cosecx.cotx} \right)\)
Find all values of x in the interval [0, 2π] such that sin x = sin 2x?
Answer (Detailed Solution Below)
Trigonometric Function Question 12 Detailed Solution
Download Solution PDFConcept-
sin 2x = 2sin x cos x.
Calculation-
As sin x = sin 2x
⇒ sin 2x - sin x = 0
⇒ 2 sin x cos x - sin x = 0
⇒ sin x (2cos x - 1) = 0
So either sin x = 0 , in interval [0, 2π] when x = 0, π, 2π
or 2cos x -1 = 0, i.e cos x = \( {1} \over {2}\) in interval [0,2π] when x = \(\frac{ π } {3} ,\frac { 5π } {3}\)
∴ total values of x in interval [0, 2π] is 5.
Find \(\rm \frac{dy}{dx}\), if y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)
Answer (Detailed Solution Below)
Trigonometric Function Question 13 Detailed Solution
Download Solution PDFConcept:
\(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)
\(\rm \frac{d(\tan^{-1} x)}{dx}= \frac{1}{1+x^2}\)
Calculation:
Given: y = \(\rm \tan^{-1}\left[ \frac{8x}{1-15x^2} \right ]\)
\(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)
As we know that, \(\rm \tan^{-1} x + \tan^{-1} y = \tan^{-1}\left[ \frac{x+y}{1-xy} \right ]\)
So, \(\rm y=\rm \tan^{-1}\left[ \frac{5x+3x}{1-5x\cdot 3x} \right ]\)= tan-1 5x + tan-1 3x
Differentiating with respect to x, we get
\(\rm \frac{dy}{dx}=\frac{d(\tan^{-1} 5x)}{dx}+\frac{d(\tan^{-1} 3x)}{dx}\)
\(= \rm \frac{5}{1+(5x)^2}+\frac{3}{1+(3x)^2}\)
\(=\rm \frac{5}{1+25x^2}+\frac{3}{1+9x^2}\)
If y = sin (cos2 x2), then \(\rm\frac{dy}{dx}\)= ?
Answer (Detailed Solution Below)
Trigonometric Function Question 14 Detailed Solution
Download Solution PDFConcept:
Derivatives of Trigonometric Functions:
\(\rm \frac{d}{dx}\sin x=\cos x\ \ \ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cos x=-\sin x\\ \frac{d}{dx}\tan x=\sec^2x\ \ \ \ \ \ \ \ \ \ \ \frac{d}{dx}\cot x=-\csc^2 x\\ \frac{d}{dx}\sec x=\tan x\sec x\ \ \ \ \frac{d}{dx}\csc x=-\cot x\csc x\)
Chain Rule of Derivatives:
- \(\rm \frac{d}{dx}f(g(x))=\frac{d}{d\ g(x)}f(g(x))× \frac{d}{dx}g(x)\).
- \(\rm \frac{dy}{dx}=\frac{dy}{du}× \frac{du}{dx}\).
Calculation:
We have y = sin (cos2 x2)
Differentiating w.r.t. x, we get:
\(\rm\frac{dy}{dx}\) = [cos (cos2 x2)] × (2 cos x2 (-sin x2)) (2x)
= -4xcos (cos2 x2) cos x2 sin x2
If f(x) = log x + 3x - 10 and g(x) = tanx then find fog'(x)
Answer (Detailed Solution Below)
Trigonometric Function Question 15 Detailed Solution
Download Solution PDFConcept:
\(\rm \frac {d(tanx)} {dx} = sec^2x\)
\(\rm \frac {d(logx)} {dx} = \frac {1} {x}\)
\(\rm \frac {d(x)} {dx} = 1\)
fog(x) = f{g(x)}
Calculation:
f(x) = log x + 3x - 10 and g(x) = tanx
fog(x) = f{g(x)} = log(tanx) + 3tanx - 10
⇒ fog'(x) = \(\rm \frac {d[log(tanx)]} {dx} + 3\frac {d(tanx)} {dx} - \frac {d(10)} {dx}\)
⇒ fog'(x) = \(\rm \frac {1} {tanx} \frac {d(tanx)} {dx} + 3 sec^2x\)
⇒ fog'(x) = \(\rm \frac {1} {tanx} \times sec^2x + 3 sec^2x\)
⇒ fog'(x) = \(\rm \frac {cosx} {sinx} \times \frac {1} {cos^2x} + 3 sec^2x\)
⇒ fog'(x) = \(\rm cosecx. secx + 3 sec^2x\)
⇒ fog'(x) = \(\rm secx (cosecx + 3secx)\)