Centroid MCQ Quiz in मराठी - Objective Question with Answer for Centroid - मोफत PDF डाउनलोड करा

Last updated on Mar 16, 2025

पाईये Centroid उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Centroid एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Centroid MCQ Objective Questions

Top Centroid MCQ Objective Questions

Centroid Question 1:

Let PQR be a triangle with R(-1, 4, 2). Suppose M(2, 1, 2) is the mid point of PQ. The distance of the centroid of ΔPQR from the point of intersection of the line \(\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}\) and \(\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}\) is

  1. 69
  2. 9
  3. \(\sqrt{69}\)
  4. \(\sqrt{99}\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt{69}\)

Centroid Question 1 Detailed Solution

Calculation

Centroid G divides MR in 1 ∶ 2   

By using section formula 

⇒ G(1, 2, 2) 

\(\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}=k\)

⇒ x = 2

\(\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}=m\)

⇒ x = 1 + m ⇒ 2 = 1 + m ⇒ m = 1

⇒ y = -6, z = 0

Point of intersection A of given lines is (2,–6, 0) 

\(\mathrm{AG}=\sqrt{69}\)

Hence option 3 is correct

Centroid Question 2:

Let P and Q be the points on the line \(\rm \frac{x+3}{8}=\frac{y-4}{2}=\frac{x+1}{2}\) which are at a distance of 6 units from the point R (1,2,3). If the centroid of the triangle PQR is (α, β, γ), then α2 + β2 + γ2 is: 

  1. 26
  2. 36
  3. 18
  4. 24

Answer (Detailed Solution Below)

Option 3 : 18

Centroid Question 2 Detailed Solution

Calculation

Given 

L: \(\rm \frac{x+3}{8}=\frac{y-4}{2}=\frac{x+1}{2}=k\)

Point on line L = P(8k - 3, 2k + 4, 2k - 1)

Distance of P from R(1,2,3) is 6 units

⇒ \((8k−4)^2+(2k+2)^2+(2k−4)^2=36\)

⇒ \((64k^2−64k+16)+(4k^2+8k+4)+(4k^2−16k+16)=36\)

⇒ 72k2 - 72k + 36 = 36

⇒ 72k2 - 72k = 0

⇒ k = 0,1

At k = 0 ⇒ P(-3,4,-1)

At k = 1 ⇒ Q(5,6,1)

The centroid of the triangle PQR is 

⇒ \((\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3},\frac{z_1+z_2+z_3}{3})\)

⇒ (1,4,1) = (α, β, γ)

α2 + β2 + γ= 1 + 16 + 1 = 18

Hence option 3 is correct

Centroid Question 3:

If (a cos θ1, a sin θ1), (a cos θ2, a sin θ2) and (a cos θ3, a sin θ3) represents the vertices of an equilateral triangle inscribed in a circle of centre at (0, 0), then consider the following statements.

I. cos θ1 + cos θ+ cos θ3 = 0

II. sin θ1 + sin θ+ sin θ3 = 0

Which of the above statement(s) is/are correct?

  1. Only I
  2. Only II
  3. Both I and II
  4. Neither I nor II

Answer (Detailed Solution Below)

Option 3 : Both I and II

Centroid Question 3 Detailed Solution

Given :

(a cos θ1, a sin θ1), (a cos θ2, a sin θ2) and (a cos θ3, a sin θ3) represents the vertices of an equilateral triangle which is inscribed in a circle.

Formula used :

Centroid (x, y) = \((\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2+ y_3}{3})\)         ------ (1)

Calculations :

We know, equilateral triangle is inscribed in a circle with centre (0, 0)

F3 Madhuri Engineering 19.07.2022 D2

We know from the above figure that

M is the circumcentre of the equilateral \(\triangle ABC\)

M is also the centroid of \(\triangle ABC\)

Using equation (1), we get

⇒ \(\text M = (\frac {a\ cos \theta_1+a\ cos \theta_2+a\ cos \theta_3}{3}, \frac {a\ sin \theta_1+a\ sin \theta_2+a\ sin \theta_3}{3}) = (0, 0)\)

⇒ \(a\ cos \theta_1+a\ cos \theta_2+a\ cos \theta_3 = 0\)

⇒ \(a\ sin \theta_1+a\ sin \theta_2+a\ sin \theta_3 = 0\)

∴ Both statements I and II are correct.

Centroid Question 4:

If the vertices of a triangle are (1, 2), (h, - 3) and (- 4, k) and the centroid of the triangle is located at (5, - 1). Find the value of h + k ?

  1. 16
  2. 25
  3. 9
  4. 20

Answer (Detailed Solution Below)

Option 1 : 16

Centroid Question 4 Detailed Solution

CONCEPT:

If the coordinates of the vertices of triangle Δ ABC are: A (x1, y1), B (x2, y2) and C (x3, y3). Then the co-ordinates of the centroid G is given by: \(\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\frac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\)

CALCULATION:

Given: (1, 2), (h, - 3) and (- 4, k) are the vertices of triangle and  the centroid of the triangle is located at (5, - 1).

Let A = (1, 2), B = (h, - 3) and C = (- 4, k) are the vertices of Δ ABC.

As we know that, the centroid of a triangle is given by: \(\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\frac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\)

Here, x1 = 1, y1 = 2, x2 = h, y2 = - 3, x3 = - 4 and y3 = k

⇒ \(G = \left( {\frac{{{1} + {h} - {4}}}{3},\frac{{{2} - {3} + {k}}}{3}} \right)\)

So, the cenroid of the given triangle is: \((\frac{h - 3}{3}, \frac{k - 1}{3})\)

∵ It is given that the centroid of the triangle is located at (5, - 1).

⇒ \(\frac{h - 3}{3} = 5 \ and\ \frac{k - 1}{3} = - 1\)

⇒ h = 18 and k = - 2

⇒ h + k = 16

Hence, option A is the correct answer.

Centroid Question 5:

If the centroid of a triangle formed by (7, x), (y, -6) and (9, 10) is (6, 3), then the values of x and y are respectively

  1. 5, 2
  2. 2, 5
  3. 1, 0
  4. 0, 0

Answer (Detailed Solution Below)

Option 1 : 5, 2

Centroid Question 5 Detailed Solution

Concept:

Centroid of a Triangle: The point where the three medians of the triangle intersect.

Let’s consider a triangle. If the three vertices of the triangle are A(x1, y1), B(x2, y2), C(x3, y3).

F1 A.K 20.6.20 Pallavi D 3

Centroid of a triangle = \(\left( {\frac{{{{\rm{x}}_1} + {\rm{\;}}{{\rm{x}}_2} + {\rm{\;}}{{\rm{x}}_3}}}{3},\frac{{{{\rm{y}}_1} + {\rm{\;}}{{\rm{y}}_2} + {\rm{\;}}{{\rm{y}}_3}}}{3}} \right)\)

Calculation:

Vertices of the triangle are given as (7, x), (y, -6) and (9, 10)

Centroid of a triangle = (6, 3)

⇒ Centroid of a triangle = (6, 3) = \(\left( {\frac{{7 + {\rm{\;y}} + {\rm{\;}}9}}{3},\frac{{{\rm{x}} - 6 + {\rm{\;}}10}}{3}} \right)\)

(18, 9) = [(16 + y), (x + 4)]

16 + y = 18 and x + 4 = 9

y = 2 and x = 5

So, (x, y) = (5, 2)

Centroid Question 6:

Let the triangle PQR be the image of the triangle with vertices (1,3), (3,1), (2,4) in the line x+2y=2. If the centroid of triangle PQR is the point (α,β), then what is the value of 15(α−β)?

  1. 5
  2. 10
  3. 22
  4. 20

Answer (Detailed Solution Below)

Option 3 : 22

Centroid Question 6 Detailed Solution

 

Concept:

To reflect a point  \((x_1, y_1) \)  across the line ax + by + c = 0, the reflected point (x', y') is given by:

\(x' = x_1 - \frac{2a(ax_1 + by_1 + c)}{a^2 + b^2}, \quad y' = y_1 - \frac{2b(ax_1 + by_1 + c)}{a^2 + b^2}. \)   

Explanation:  

Vertex 1: (1, 3)

\(x' = 1 - \frac{2(1(1) + 2(3) - 2)}{1^2 + 2^2}, \quad y' = 3 - \frac{2(2(1) + 4(3) - 4)}{1^2 + 2^2}\\ x' = 1 - \frac{2(1 + 6 - 2)}{5}, \quad y' = 3 - \frac{2(2 + 12 - 4)}{5}\\ x' = 1 - \frac{10}{5}, \quad y' = 3 - \frac{20}{5}\\ x' = -1, \quad y' = -1\\ \)  

Reflected point: (-1, -1) 

Vertex 2: (3, 1)

\(x' = 3 - \frac{2(1(3) + 2(1) - 2)}{1^2 + 2^2}, \quad y' = 1 - \frac{2(2(3) + 4(1) - 4)}{1^2 + 2^2} \\ x' = 3 - \frac{2(3 + 2 - 2)}{5}, \quad y' = 1 - \frac{2(6 + 4 - 4)}{5} \\ x' = 3 - \frac{6}{5}, \quad y' = 1 - \frac{12}{5} \\ x' = \frac{15}{5} - \frac{6}{5}, \quad y' = \frac{5}{5} - \frac{12}{5} \\ x' = \frac{9}{5}, \quad y' = -\frac{7}{5} \\ \)   

Reflected point:   \(\left(\frac{9}{5}, -\frac{7}{5}\right) \)
Vertex 3: (2, 4)

\(x' = 2 - \frac{2(1(2) + 2(4) - 2)}{1^2 + 2^2}, \quad y' = 4 - \frac{2(2(2) + 4(4) - 4)}{1^2 + 2^2} \\ x' = 2 - \frac{2(2 + 8 - 2)}{5}, \quad y' = 4 - \frac{2(4 + 16 - 4)}{5} \\ x' = 2 - \frac{16}{5}, \quad y' = 4 - \frac{32}{5} \\ x' = \frac{10}{5} - \frac{16}{5}, \quad y' = \frac{20}{5} - \frac{32}{5} \\ x' = -\frac{6}{5}, \quad y' = -\frac{12}{5} \\ \)

Reflected point:  \( \left(-\frac{6}{5}, -\frac{12}{5}\right) \)

Centroid of  \(\Delta PQR \) :

\(\alpha = \frac{x_1 + x_2 + x_3}{3}, \quad \beta = \frac{y_1 + y_2 + y_3}{3} \)   

Substitute the reflected points:

\(\alpha = \frac{-1 + \frac{9}{5} - \frac{6}{5}}{3}, \quad \beta = \frac{-1 - \frac{7}{5} - \frac{12}{5}}{3} \) 


\(\alpha = \frac{-\frac{5}{5} + \frac{9}{5} - \frac{6}{5}}{3}, \quad \beta = \frac{-\frac{5}{5} - \frac{7}{5} - \frac{12}{5}}{3} \)  

\(\alpha = \frac{-\frac{2}{5}}{3}, \quad \beta = \frac{-\frac{24}{5}}{3} \)   


\(\alpha = -\frac{2}{15}, \quad \beta = -\frac{24}{15} \)   

\(15(\alpha - \beta) = 15\left(-\frac{2}{15} - \left(-\frac{24}{15}\right)\right) \)   

\(15(\alpha - \beta) = 15\left(-\frac{2}{15} + \frac{24}{15}\right) \)  

\(15(\alpha - \beta) = 15\left(\frac{22}{15}\right) \)  

\(15(\alpha - \beta) = 22 \)

Hence 22 is the correct answer.

 

Centroid Question 7:

If two vertices of a triangle are A(3, 1, 4) and B(-4, 5, −3) and the centroid of the triangle is G(-1, 2, 1), then the third vertex C of the triangle is

  1. (2, 0, 2)
  2. (-2, 0, 2)
  3. (0, -2, 2)
  4. (2, -2, 0)

Answer (Detailed Solution Below)

Option 2 : (-2, 0, 2)

Centroid Question 7 Detailed Solution

Calculation:

Let the coordinates of C be C = (x, y, z)

Given, A(3, 1, 4) and B(-4, 5, −3) and the centroid of the triangle is G(-1, 2, 1)

∴ \(\frac{3+(-4)+x}{3}\) = - 1

⇒ x = - 2

Also, \(\frac{1+5+y}{3}\) = 2

⇒ y = 0

and, \(\frac{4+(-3)+z}{3}\) = 1

⇒ z = 2

∴ C = (x, y, z) = (- 2, 0, 2)

∴ The coordinates of C are (-2, 0, 2)

The correct answer is Option 2.

Centroid Question 8:

Let the position vectors of the vertices A, B and C of a triangle be  2î + 2ĵ + k̂, î + 2ĵ + 2k̂ and 2î + ĵ + 2k̂ respectively. Let ℓ1, ℓ2, and ℓ3 be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides AB, BC and CA respectively, then \(ℓ_1^2 + ℓ_2^2 + ℓ_3^2\) equals : 

  1. \(\frac{1}{5}\)
  2. \(\frac{1}{2}\)
  3. \(\frac{1}{4}\)
  4. \(\frac{1}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\)

Centroid Question 8 Detailed Solution

Calculation

 

qImage669e7559e19ced6c2bbf9f28

ΔABC is equilateral

Orthocentre and centroid will be same

⇒ \(\mathrm{G}\left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right)\)

Mid - point of AB is D \(\left(\frac{3}{2}, 2, \frac{3}{2}\right)\)

∴ ℓ1\(\sqrt{\frac{1}{36}+\frac{1}{9}+\frac{1}{36}}\)

⇒ ℓ1 = \(\sqrt{\frac{1}{6}}=\ell_2=\ell_3\)

∴ \(\ell_1^2+\ell_2^2+\ell_3^2=\frac{1}{2}\) 

Hence option (2} is correct

Centroid Question 9:

Find the centroid of the triangle ABC whose coordinates are A(4,4), B(-1,-2) and C(6,-8) ?

  1. (3, 2)
  2. (3, -2)
  3. (2, -3)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : (3, -2)

Centroid Question 9 Detailed Solution

CONCEPT:

If the coordinates of the vertices of triangle Δ ABC are: A (x1, y1), B (x2, y2) and C (x3, y3). Then the co-ordinates of the centroid G is given by: \(\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\frac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\)

CALCULATION:

Given: A(4,4), B(-1,-2) and C(6,-8) are the coordinates of the triangle ABC.

As we know that, centroid of a triangle ABC whose vertices are A (x1, y1), B (x2, y2) and C (x3, y3) is given by: \(\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\frac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\)

Here, x1 = 4, y1 = 4, x2 = - 1, y2 = 2, x3 = 6 and y3 = 8.

So, the centroid of triangle ABC is: \(\left( {\frac{{{4} - {1} + {6}}}{3},\frac{{{4} - {2} - {8}}}{3}} \right)\)

=  \(\left(3, - 2 \right)\)

So, the centroid of the given triangle ABC is (3, - 2)

Centroid Question 10:

The Centroid of a triangle separates the medians in the ratio of ________.

  1. 1 : 2
  2. 2 : 1
  3. 3 : 1
  4. 1: 3

Answer (Detailed Solution Below)

Option 2 : 2 : 1

Centroid Question 10 Detailed Solution

Important Points

The Centroid of a triangle separates the medians in the ratio of 2 : 1

The Centroid of a triangle: The centroid of a triangle is formed when three medians of a triangle intersect. It is one of the four points of concurrency of a triangle. The medians of a triangle are constructed when the vertices of a triangle are joined with the midpoint of the opposite sides of the triangle.

 

Get Free Access Now
Hot Links: teen patti gold new version 2024 lucky teen patti teen patti cash teen patti master gold