Limit and Continuity MCQ Quiz - Objective Question with Answer for Limit and Continuity - Download Free PDF
Last updated on May 20, 2025
Latest Limit and Continuity MCQ Objective Questions
Limit and Continuity Question 1:
If f(x) = \(\left\{\begin{array}{l}\rm mx+1, \text { if } x \leq \frac{\pi}{2} \\ \sin \rm x+n, \text { if } x>\frac{\pi}{2}\end{array}\right.\), is continuous at x = \(\frac{\pi}{2}\), then
Answer (Detailed Solution Below)
Limit and Continuity Question 1 Detailed Solution
Concept:
A function f(x) is continuous at x = a, if \(\lim_{x\to a^{-}}\) f(x) = \(\lim_{x\to a^{+}}\)f(x) = f(a).
Calculation:
Given: f(x) = \(\left\{\begin{array}{l}\rm mx+1, \text { if } x \leq \frac{\pi}{2} \\ \sin \rm x+n, \text { if } x>\frac{\pi}{2}\end{array}\right.\)
f(\(\frac{π}{2}\)) = m × \(\frac{π}{2}\) + 1
Left-hand limit = \(\lim_{h\to0}f(\frac{π}{2}-h)\,\)
\(=\,\lim_{h\to0}\,m\times \left(\frac{π}{2}-h\right) + 1 \)
Applying the limits:
Left- hand limit = m × \(\frac{π}{2}\) + 1
Right-hand limit = \(\lim_{h\to0}f(\frac{π}{2}+h)\,\)
\(=\,\lim_{h\to0}\,\sin\left(\frac{π}{2}+h\right) +n\)
Applying the limits:
\(=\sin \frac{π}{2}+n\)
Right-hand limit = 1 + n
For the function to be continuous at x = \(\frac{π}{2}\),
Left-hand limit = Right-hand limit = f(π/2)
⇒ m× \(\frac{π}{2}\) + 1 = 1 + n
⇒ n = \(\frac{mπ}{2}\)
The correct answer is n = \(\frac{mπ}{2}\) .
Limit and Continuity Question 2:
The function f(x) = x Sin (1/x), If x = 0 and f(0) = 1 has discontinuity at _________
Answer (Detailed Solution Below)
Limit and Continuity Question 2 Detailed Solution
Concept:
If a function is continuous at a point a, then
\(\rm \displaystyle \lim_{x\rightarrow a} f(x) = f(a)\)
sin(∞) = a, Where -1≤ a ≤ 1
Calculation:
Given:
f(0) = 1
f(x) = x sin (1/x)
Checking continuity at x = 0
\(\rm \displaystyle \lim_{x\rightarrow 0} f(x) = f(0)\)
L.H.L
= \(\rm \displaystyle \lim_{x\rightarrow 0} f(x) = \rm \displaystyle \lim_{x\rightarrow 0} \ x\ \sin \left ( \frac 1 x\right ) = 0× \sin \left ( \frac {1}{ 0} \right ) \)
= 0 × sin(∞)
= 0
R.H.L
= f(0) = 1
L.H.L ≠ R.H.L
Hence, function is discontinuous at x = 0.
Limit and Continuity Question 3:
The value of k which makes the function defined by f(x) = \(\left\{\begin{array}{ll}\sin \frac{1}{\rm x}, & \text { if } \rm x \neq 0 \\ \rm k, & \text { if } \rm x = 0\end{array}\right.\), continuous at x = 0 is
Answer (Detailed Solution Below)
Limit and Continuity Question 3 Detailed Solution
Concept:
If a function is continuous at x = a, then L.H.L = R.H.L = f(a).
Left hand limit (L.H.L) of f(x) at x = a is \(\lim_{h\to0}\,f(a-h)\)
Right hand limit (R.H.L) of f(x) at x = a is \(\lim_{h\to0}\,f(a+h)\)
Calculation:
Left hand limit (L.H.L) of f(x) at x = 0 is \(\lim_{h\to0}\,f(0-h)\)
= \(\lim_{h\to0}\sin\Big(\frac{1}{0-h}\Big)\)
= \(\lim_{h\to0}\,\sin\Big(\frac{1}{-h}\Big)\)
\(=-\lim_{h\to0}\,\sin\Big(\frac{1}{h}\Big)\)
We know that -1 ≤ sin θ ≤ 1
⇒ - 1 ≤ \(\,\sin\Big(\frac{1}{h}\Big)\) ≤ 1
∴ \(\,\sin\Big(\frac{1}{h}\Big)\) is a finite value.
Let \(\,\sin\Big(\frac{1}{h}\Big)\) = a
\(=-\lim_{h\to0}\ a\)
∴ L.H. L = - a
Right hand limit (R.H.L) of f(x) at x = 0 is \(\lim_{h\to0}\,f(0+h)\)
= \(\lim_{h\to0}\,\sin\Big(\frac{1}{0+h}\Big)\)
= \(\lim_{h\to0}\,\sin\frac{1}{h}\)
R.H.L. = a
Clearly, L.H.L. ≠ R.H.L.
Hence, there does exist any value of k for which the function f(x) is continuous at x = 0.
Limit and Continuity Question 4:
If f(x)=|x|, then f(x) is
Answer (Detailed Solution Below)
Limit and Continuity Question 4 Detailed Solution
Concept:
The function f(x) is continuous at x = a if
f(a-) = f(a) = f(a+)
Calculation:
Given, f(x) = |x|
For x ≥ 0, f(x) = x
and for x < 0, f(x) = - x
So function is continuous for x > 0 and x < 0
At x = 0,
f(0-) = f(0) = f(0+) = 0
⇒ f(x) is continuous at x = 0
∴ The correct answer is option (1).
Limit and Continuity Question 5:
If f(x)=|x|, then f(x) is
Answer (Detailed Solution Below)
Limit and Continuity Question 5 Detailed Solution
Concept:
The function f(x) is continuous at x = a if
f(a-) = f(a) = f(a+)
Calculation:
Given, f(x) = |x|
For x ≥ 0, f(x) = x
and for x < 0, f(x) = - x
So function is continuous for x > 0 and x < 0
At x = 0,
f(0-) = f(0) = f(0+) = 0
⇒ f(x) is continuous at x = 0
∴ The correct answer is option (1).
Top Limit and Continuity MCQ Objective Questions
Find the value of \(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)
Answer (Detailed Solution Below)
Limit and Continuity Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1\)
Calculation:
\(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)
= \(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{1}{x} \right )}\)
= \(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{4}{x} \right )} \times 4\)
Let \(\rm \frac {4}{x} = t\)
If x → ∞ then t → 0
= \(\rm 8 \times\displaystyle \lim_{t \rightarrow 0} \frac{\sin t}{t} \)
= 8 × 1
= 8
What is the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 7 Detailed Solution
Download Solution PDFConcept:
- 1 - cos 2θ = 2 sin2 θ
- \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{\sin x}}{x} = 1\)
Calculation:
\(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)
= \(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {2{{\sin }^2}x} \right)}^2}}}{{{x^4}}}\) (1 - cos 2θ = 2 sin2 θ)
= \(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{4{{\sin }^4}x}}{{{x^4}}}\)
= \(\mathop {\lim }\limits_{x \to 0} 4\; × \;{\left( {\frac{{\sin x}}{x}} \right)^4}\)
= 4 × 1 = 4
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm \mathop {\lim }\limits_{x\; \to \;a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{\mathop {\lim }\limits_{x\; \to \;a} f\left( x \right)}}{{\mathop {\lim }\limits_{x\; \to \;a} g\left( x \right)}},\;provided\;\mathop {\lim }\limits_{x\; \to a} g\left( x \right) \ne 0\)
\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\)
\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)
Calculation:
\(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)
\(\rm = \mathop {\lim }\limits_{x\rightarrow 0} \frac{\frac{\log (1+2x)}{2x} \times 2x}{\frac{\tan 2x}{2x} \times 2x}\\= \frac{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\log (1+2x)}{2x} }{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\tan 2x}{2x} }\)
As we know \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)
Therefore, \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan 2x}}{2x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+2x)}}{2x}} = 1\)
Hence \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x} = \frac 1 1=1\)
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{\sqrt{1+2x^2}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 9 Detailed Solution
Download Solution PDFCalculation:
We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)
\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\) [Form \(\frac{∞}{∞}\)]
This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞ out of the numerator and denominator.
\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{x\sqrt{\frac{1}{x^2}+2}}\)
Factor x becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\sqrt{\frac{1}{x^2}+2}}\)
= \(\frac{1}{\sqrt{\frac{1}{\infty^2}+2}}=\frac{1}{\sqrt{0+2}}=\frac{1}{\sqrt 2}\)
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 10 Detailed Solution
Download Solution PDFCalculation:
We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\) [Form \(\frac{∞}{∞}\)]
This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞ out of the numerator and denominator.
\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{x^2\left({\frac {1}{x^2}+1}\right)}\)
Factor x2 becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\left({\frac {1}{x^2}+1}\right)}\)
= \(\frac{1}{{\frac{1}{\infty^2}+1}}=\frac{1}{{0+1}}=1\)
The value of \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\) is
Answer (Detailed Solution Below)
Limit and Continuity Question 11 Detailed Solution
Download Solution PDFConcept:
For a limit to exist, Left-hand limit and right-hand limit must be equal.
Calculations:
For a limit to exist Left-hand limit and right-hand limit must be equal.
|x| can have two values
|x | = - x when x is negative
|x| = x when x is positive.
\(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x}\) = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{-x}{x} = -1\)
\(\rm \displaystyle\lim_{x\rightarrow 0^+} \dfrac{|x|}{x}\) = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{x}{x} = 1\)
Here, \(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x} \neq \rm \displaystyle\lim_{x\rightarrow 0^+}\dfrac{|x|}{x}\)
Hence, \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\)does not exist.
Examine the continuity of a function f(x) = (x - 2) (x - 3)
Answer (Detailed Solution Below)
Limit and Continuity Question 12 Detailed Solution
Download Solution PDFConcept:
- We say f(x) is continuous at x = c if
LHL = RHL = value of f(c)
i.e., \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{c}} \right)\)
Calculation:
\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\; = \;\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} \left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right)\) (a ϵ Real numbers)
\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 3{\rm{x}} - 2{\rm{x}} + 6\)
\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 5{\rm{x}} + 6\)
\(= {{\rm{a}}^2} - 5{\rm{a}} + 6\)
∴ f(x) = f(a), So continuous at everywhere
Important tip:
Quadratic and polynomial functions are continuous at each point in their domain
If \(\rm f(x)=\left\{\begin{matrix}\rm \dfrac{\sin 3x}{e^{2x}-1}, &\rm x \ne 0\\\rm k-2, &\rm x=0 \end{matrix}\right.\) is continuous at x = 0, then k = ?
Answer (Detailed Solution Below)
Limit and Continuity Question 13 Detailed Solution
Download Solution PDFConcept:
Definition:
- A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
- f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).
Formulae:
- \(\rm \displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1\)
- \(\rm \displaystyle \lim_{x\to 0}\dfrac{e^x-1}{x}=1\)
Calculation:
Since f(x) is given to be continuous at x = 0, \(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\).
Also, \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)\) because f(x) is same for x > 0 and x < 0.
\(\rm \therefore \displaystyle \lim_{x\to 0}f(x)=f(0)\)
\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\sin 3x}{e^{2x}-1}=k-2\)
\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\dfrac{\sin 3x}{3x}\times3x}{\dfrac{e^{2x}-1}{2x}\times2x}=k-2\)
\(\rm \Rightarrow \dfrac{3}{2}=k-2\)
\(\rm \Rightarrow k=\dfrac{7}{2}\).
The value of \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}\) is equal to:
Answer (Detailed Solution Below)
Limit and Continuity Question 14 Detailed Solution
Download Solution PDFConcept:
- \(\rm \displaystyle \lim_{x\to0}\dfrac{\tan x}{x}=1\).
- \(\rm \dfrac{d}{dx}\tan x=\sec^2x\).
- \(\rm \dfrac{d}{dx}\sec x=\tan x\sec x\).
- \(\rm \dfrac{d}{dx}\left[f(x)\times g(x)\right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)\).
Indeterminate Forms: Any expression whose value cannot be defined, like \(\dfrac00\), \(\pm\dfrac{\infty}{\infty}\), 00, ∞0 etc.
- For the indeterminate form \(\dfrac 0 0\), first try to rationalize by multiplying with the conjugate, or simplify by cancelling some terms in the numerator and denominator. Else, use the L'Hospital's rule.
- L'Hospital's Rule: For the differentiable functions f(x) and g(x), the \(\rm \displaystyle \lim_{x\to c} \dfrac{f(x)}{g(x)}\), if f(x) and g(x) are both 0 or ±∞ (i.e. an Indeterminate Form) is equal to the \(\rm \displaystyle \lim_{x\to c} \dfrac{f'(x)}{g'(x)}\) if it exists.
Calculation:
\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\dfrac00\) is an indeterminate form. Let us simplify and use the L'Hospital's Rule.
\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\lim_{x\to 0}\left[\dfrac{\tan x - x}{x^3}\times\dfrac{x}{\tan x}\right]\).
We know that \(\rm \displaystyle\lim_{x\to 0}\dfrac{x}{\tan x}=1\), but \(\rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}\) is still an indeterminate form, so we use L'Hospital's Rule:
\(\rm \displaystyle \rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}=\lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}\), which is still an indeterminate form, so we use L'Hospital's Rule again:
\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}= \lim_{x\to 0}\dfrac{2\sec x(\sec x\tan x)}{6x}=\lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}\), which is still an indeterminate form, so we use L'Hospital's Rule again:
\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}=\lim_{x\to 0}\dfrac{\sec^2 x\sec^2 x+\tan x[2\sec x(\sec x \tan x)]}{3}=\dfrac{1}{3}\).
∴ \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=1\times\dfrac{1}{3}=\dfrac{1}{3}\).
If \(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\) is a continuous function at x = 0, then the value of k is:
Answer (Detailed Solution Below)
Limit and Continuity Question 15 Detailed Solution
Download Solution PDFConcept:
Definition:
- A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
- f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).
Calculation:
For x ≠ 0, the given function can be re-written as:
\(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\)
Since the equation of the function is same for x < 0 and x > 0, we have:
\(\rm \displaystyle \lim_{x\to 0^+}f(x)=\lim_{x\to 0^-}f(x)=\lim_{x\to 0}\frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}\)
= \(\rm \displaystyle \lim_{x\to 0}\frac{2- \frac {\sin^{-1} x} x}{2 +\frac {\tan^{-1} x} x} = \frac {2-1}{2+1} = \frac 1 3\)
For the function to be continuous at x = 0, we must have:
\(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\)
⇒ K = \(\dfrac{1}{3}\).