Limit and Continuity MCQ Quiz - Objective Question with Answer for Limit and Continuity - Download Free PDF

Last updated on May 20, 2025

Latest Limit and Continuity MCQ Objective Questions

Limit and Continuity Question 1:

If f(x) = \(\left\{\begin{array}{l}\rm mx+1, \text { if } x \leq \frac{\pi}{2} \\ \sin \rm x+n, \text { if } x>\frac{\pi}{2}\end{array}\right.\), is continuous at x = \(\frac{\pi}{2}\), then

  1. m = 1, n = 0
  2. m = \(\frac{n \pi}{2}\) + 1
  3. n = \(\rm \frac{m \pi}{2}\)
  4. More than one of the above

Answer (Detailed Solution Below)

Option 3 : n = \(\rm \frac{m \pi}{2}\)

Limit and Continuity Question 1 Detailed Solution

Concept:

A function f(x) is continuous at x = a, if \(\lim_{x\to a^{-}}\) f(x) = \(\lim_{x\to a^{+}}\)f(x) = f(a).

Calculation:

Given: f(x) = \(\left\{\begin{array}{l}\rm mx+1, \text { if } x \leq \frac{\pi}{2} \\ \sin \rm x+n, \text { if } x>\frac{\pi}{2}\end{array}\right.\)

f(\(\frac{π}{2}\)) = m × \(\frac{π}{2}\) + 1

Left-hand limit = \(\lim_{h\to0}f(\frac{π}{2}-h)\,\)

\(=\,\lim_{h\to0}\,m\times \left(\frac{π}{2}-h\right) + 1 \)

Applying the limits:

Left- hand limit = m × \(\frac{π}{2}\) + 1

Right-hand limit = \(\lim_{h\to0}f(\frac{π}{2}+h)\,\)

\(=\,\lim_{h\to0}\,\sin\left(\frac{π}{2}+h\right) +n\)

Applying the limits:

 \(=\sin \frac{π}{2}+n\)

Right-hand limit = 1 + n

For the function to be continuous at x = \(\frac{π}{2}\),

Left-hand limit = Right-hand limit = f(π/2)

⇒ m× \(\frac{π}{2}\) + 1 = 1 + n

⇒ n = \(\frac{mπ}{2}\)

The correct answer is n = \(\frac{mπ}{2}\) .

Limit and Continuity Question 2:

The function f(x) = x Sin (1/x), If x = 0 and f(0) = 1 has discontinuity at _________

  1. 3
  2. 0
  3. 1
  4. More than one of the above

Answer (Detailed Solution Below)

Option 2 : 0

Limit and Continuity Question 2 Detailed Solution

Concept:

If a function is continuous at a point a, then

\(\rm \displaystyle \lim_{x\rightarrow a} f(x) = f(a)\)

sin(∞) = a, Where -1≤ a ≤ 1

Calculation:

Given:

f(0) = 1

f(x) = x sin (1/x)

Checking continuity at x = 0

\(\rm \displaystyle \lim_{x\rightarrow 0} f(x) = f(0)\)

L.H.L

\(\rm \displaystyle \lim_{x\rightarrow 0} f(x) = \rm \displaystyle \lim_{x\rightarrow 0} \ x\ \sin \left ( \frac 1 x\right ) = 0× \sin \left ( \frac {1}{ 0} \right ) \)

= 0 × sin(∞)

= 0 

R.H.L

= f(0) = 1

L.H.L ≠ R.H.L

Hence, function is discontinuous at x = 0.

Limit and Continuity Question 3:

The value of k which makes the function defined by f(x) = \(\left\{\begin{array}{ll}\sin \frac{1}{\rm x}, & \text { if } \rm x \neq 0 \\ \rm k, & \text { if } \rm x = 0\end{array}\right.\), continuous at x = 0 is

  1. 8
  2. 1
  3. –1
  4. None of the above

Answer (Detailed Solution Below)

Option 4 : None of the above

Limit and Continuity Question 3 Detailed Solution

Concept:

If a function is continuous at x = a, then L.H.L = R.H.L = f(a).

Left hand limit (L.H.L) of f(x) at x = a is \(\lim_{h\to0}\,f(a-h)\) 

Right hand limit (R.H.L) of f(x) at x = a is \(\lim_{h\to0}\,f(a+h)\)

Calculation:

Given f(x) = \(\left\{\begin{array}{ll}\sin \frac{1}{\rm x}, & \text { if } \rm x ≠ 0 \\ \rm k, & \text { if } \rm x = 0\end{array}\right.\),
f(0) = k

Left hand limit (L.H.L) of f(x) at x = 0 is \(\lim_{h\to0}\,f(0-h)\)

=  \(\lim_{h\to0}\sin\Big(\frac{1}{0-h}\Big)\)

\(\lim_{h\to0}\,\sin\Big(\frac{1}{-h}\Big)\)

\(=-\lim_{h\to0}\,\sin\Big(\frac{1}{h}\Big)\)

We know that -1 ≤ sin θ ≤ 1 

⇒ - 1 ≤ \(\,\sin\Big(\frac{1}{h}\Big)\) ≤ 1

∴  \(\,\sin\Big(\frac{1}{h}\Big)\) is a finite value.

Let  \(\,\sin\Big(\frac{1}{h}\Big)\) = a

\(=-\lim_{h\to0}\ a\)

∴ L.H. L = - a

Right hand limit (R.H.L) of f(x) at x = 0 is \(\lim_{h\to0}\,f(0+h)\)

=  \(\lim_{h\to0}\,\sin\Big(\frac{1}{0+h}\Big)\)

\(\lim_{h\to0}\,\sin\frac{1}{h}\)

R.H.L. = a   

Clearly, L.H.L. ≠  R.H.L.

Hence, there does exist any value of k for which the function f(x) is continuous at x = 0.

Limit and Continuity Question 4:

If f(x)=|x|, then f(x) is 

  1. Continuous for all x
  2. Differentiable at x = 0
  3. Neither continuous nor differentiable at x = 0
  4. continuous but not differentiable

Answer (Detailed Solution Below)

Option 1 : Continuous for all x

Limit and Continuity Question 4 Detailed Solution

Concept:

The function f(x) is continuous at x = a if

 f(a-) = f(a) = f(a+)

Calculation:

Given, f(x) = |x| 

For x ≥ 0, f(x) = x

and for x < 0, f(x) = - x 

So function is continuous for x > 0 and x < 0

At x = 0, 

f(0-) = f(0) = f(0+) = 0

⇒ f(x) is continuous at x = 0

∴ The correct answer is option (1).

Limit and Continuity Question 5:

If f(x)=|x|, then f(x) is 

  1. Continuous for all x
  2. Differentiable at x = 0
  3. Neither continuous nor differentiable at x = 0
  4. continuous but not differentiable

Answer (Detailed Solution Below)

Option 1 : Continuous for all x

Limit and Continuity Question 5 Detailed Solution

Concept:

The function f(x) is continuous at x = a if

 f(a-) = f(a) = f(a+)

Calculation:

Given, f(x) = |x| 

For x ≥ 0, f(x) = x

and for x < 0, f(x) = - x 

So function is continuous for x > 0 and x < 0

At x = 0, 

f(0-) = f(0) = f(0+) = 0

⇒ f(x) is continuous at x = 0

∴ The correct answer is option (1).

Top Limit and Continuity MCQ Objective Questions

Find the value of \(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)

  1. 2
  2. 4
  3. 8
  4. \(\frac 1 2\)

Answer (Detailed Solution Below)

Option 3 : 8

Limit and Continuity Question 6 Detailed Solution

Download Solution PDF

Concept:

\(\rm \displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1\)

Calculation:

\(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)

\(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{1}{x} \right )}\)

\(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{4}{x} \right )} \times 4\)

Let \(\rm \frac {4}{x} = t\)

If x → ∞ then t → 0

\(\rm 8 \times\displaystyle \lim_{t \rightarrow 0} \frac{\sin t}{t} \)

= 8 × 1 

= 8 

What is the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)

  1. 1
  2. 8
  3. 4
  4. 0

Answer (Detailed Solution Below)

Option 3 : 4

Limit and Continuity Question 7 Detailed Solution

Download Solution PDF

Concept:

  • 1 - cos 2θ = 2 sin2 θ
  • \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{\sin x}}{x} = 1\)

 

Calculation:

\(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)

\(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {2{{\sin }^2}x} \right)}^2}}}{{{x^4}}}\)          (1 - cos 2θ = 2 sin2 θ)

\(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{4{{\sin }^4}x}}{{{x^4}}}\)

\(\mathop {\lim }\limits_{x \to 0} 4\; × \;{\left( {\frac{{\sin x}}{x}} \right)^4}\)

= 4 × 1 = 4

Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)

  1. -1
  2. 1
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 2 : 1

Limit and Continuity Question 8 Detailed Solution

Download Solution PDF

Concept:

\(\rm \mathop {\lim }\limits_{x\; \to \;a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{\mathop {\lim }\limits_{x\; \to \;a} f\left( x \right)}}{{\mathop {\lim }\limits_{x\; \to \;a} g\left( x \right)}},\;provided\;\mathop {\lim }\limits_{x\; \to a} g\left( x \right) \ne 0\)

\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\)

\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)

 

Calculation:

\(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)

\(\rm = \mathop {\lim }\limits_{x\rightarrow 0} \frac{\frac{\log (1+2x)}{2x} \times 2x}{\frac{\tan 2x}{2x} \times 2x}\\= \frac{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\log (1+2x)}{2x} }{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\tan 2x}{2x} }\)

As we know \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)

Therefore, \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan 2x}}{2x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+2x)}}{2x}} = 1\)

Hence \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x} = \frac 1 1=1\)

Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{\sqrt{1+2x^2}}\)

  1. 0
  2. 1
  3. \(\frac{1}{\sqrt 2}\)
  4. \(\frac 1 2\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{\sqrt 2}\)

Limit and Continuity Question 9 Detailed Solution

Download Solution PDF

Calculation:

We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)       [Form \(\frac{∞}{∞}\)]

This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞  out of the numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{x\sqrt{\frac{1}{x^2}+2}}\)

Factor x becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\sqrt{\frac{1}{x^2}+2}}\)

\(\frac{1}{\sqrt{\frac{1}{\infty^2}+2}}=\frac{1}{\sqrt{0+2}}=\frac{1}{\sqrt 2}\)

Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)

  1. 0
  2. 1
  3. 2
  4. \(\frac 12 \)

Answer (Detailed Solution Below)

Option 2 : 1

Limit and Continuity Question 10 Detailed Solution

Download Solution PDF

Calculation:

We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)       [Form \(\frac{∞}{∞}\)]

This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞  out of the numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{x^2\left({\frac {1}{x^2}+1}\right)}\)

Factor x2 becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\left({\frac {1}{x^2}+1}\right)}\)

\(\frac{1}{{\frac{1}{\infty^2}+1}}=\frac{1}{{0+1}}=1\)

The value of \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\) is

  1. 1
  2. -1
  3. 0
  4. Does not exist

Answer (Detailed Solution Below)

Option 4 : Does not exist

Limit and Continuity Question 11 Detailed Solution

Download Solution PDF

Concept:

For a limit to exist, Left-hand limit and right-hand limit must be equal.

Calculations:

For a limit to exist Left-hand limit and right-hand limit must be equal.

|x| can have two values 

|x | = - x when x is negative 

|x| = x when x is positive.

\(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x}\) = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{-x}{x} = -1\)

\(\rm \displaystyle\lim_{x\rightarrow 0^+} \dfrac{|x|}{x}\)​ = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{x}{x} = 1\)

Here, \(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x} \neq \rm \displaystyle\lim_{x\rightarrow 0^+}\dfrac{|x|}{x}\)

Hence, \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\)does not exist

Examine the continuity of a function f(x) = (x - 2) (x - 3)

  1. Discontinuous at x = 2
  2. Discontinuous at x = 2, 3
  3. Continuous everywhere
  4. Discontinuous at x = 3

Answer (Detailed Solution Below)

Option 3 : Continuous everywhere

Limit and Continuity Question 12 Detailed Solution

Download Solution PDF

Concept:

  • We say f(x) is continuous at x = c if

LHL = RHL = value of f(c)

i.e., \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{c}} \right)\)

Calculation:

\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\; = \;\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} \left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right)\)            (a ϵ Real numbers)

\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 3{\rm{x}} - 2{\rm{x}} + 6\)

\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 5{\rm{x}} + 6\)

\(= {{\rm{a}}^2} - 5{\rm{a}} + 6\)

∴ f(x) = f(a), So continuous at everywhere

Important tip:

Quadratic and polynomial functions are continuous at each point in their domain

If \(\rm f(x)=\left\{\begin{matrix}\rm \dfrac{\sin 3x}{e^{2x}-1}, &\rm x \ne 0\\\rm k-2, &\rm x=0 \end{matrix}\right.\) is continuous at x = 0, then k = ?

  1. \(\dfrac{3}{2}\)
  2. \(\dfrac{9}{5}\)
  3. \(\dfrac{1}{2}\)
  4. \(\dfrac{7}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{7}{2}\)

Limit and Continuity Question 13 Detailed Solution

Download Solution PDF

Concept:

Definition:

  • A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
  • f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).

 

Formulae:

  • \(\rm \displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1\)
  • \(\rm \displaystyle \lim_{x\to 0}\dfrac{e^x-1}{x}=1\)

 

Calculation: 

Since f(x) is given to be continuous at x = 0, \(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\).

Also, \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)\) because f(x) is same for x > 0 and x < 0.

 \(\rm \therefore \displaystyle \lim_{x\to 0}f(x)=f(0)\)

\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\sin 3x}{e^{2x}-1}=k-2\)

\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\dfrac{\sin 3x}{3x}\times3x}{\dfrac{e^{2x}-1}{2x}\times2x}=k-2\)

\(\rm \Rightarrow \dfrac{3}{2}=k-2\)

\(\rm \Rightarrow k=\dfrac{7}{2}\).

The value of \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}\) is equal to:

  1. 0
  2. 1
  3. \(\dfrac{1}{2}\)
  4. \(\dfrac{1}{3}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{1}{3}\)

Limit and Continuity Question 14 Detailed Solution

Download Solution PDF

Concept:

  • \(\rm \displaystyle \lim_{x\to0}\dfrac{\tan x}{x}=1\).
  • \(\rm \dfrac{d}{dx}\tan x=\sec^2x\).
  • \(\rm \dfrac{d}{dx}\sec x=\tan x\sec x\).
  • \(\rm \dfrac{d}{dx}\left[f(x)\times g(x)\right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)\).

 

Indeterminate Forms: Any expression whose value cannot be defined, like \(\dfrac00\), \(\pm\dfrac{\infty}{\infty}\), 00, ∞0 etc.

  • For the indeterminate form \(\dfrac 0 0\), first try to rationalize by multiplying with the conjugate, or simplify by cancelling some terms in the numerator and denominator. Else, use the L'Hospital's rule.
  • L'Hospital's Rule: For the differentiable functions f(x) and g(x), the \(\rm \displaystyle \lim_{x\to c} \dfrac{f(x)}{g(x)}\), if f(x) and g(x) are both 0 or ±∞ (i.e. an Indeterminate Form) is equal to the \(\rm \displaystyle \lim_{x\to c} \dfrac{f'(x)}{g'(x)}\) if it exists.

 

Calculation:

\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\dfrac00\) is an indeterminate form. Let us simplify and use the L'Hospital's Rule.

\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\lim_{x\to 0}\left[\dfrac{\tan x - x}{x^3}\times\dfrac{x}{\tan x}\right]\).

We know that \(\rm \displaystyle\lim_{x\to 0}\dfrac{x}{\tan x}=1\), but \(\rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}\) is still an indeterminate form, so we use L'Hospital's Rule:

\(\rm \displaystyle \rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}=\lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}\), which is still an indeterminate form, so we use L'Hospital's Rule again:

\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}= \lim_{x\to 0}\dfrac{2\sec x(\sec x\tan x)}{6x}=\lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}\), which is still an indeterminate form, so we use L'Hospital's Rule again:

\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}=\lim_{x\to 0}\dfrac{\sec^2 x\sec^2 x+\tan x[2\sec x(\sec x \tan x)]}{3}=\dfrac{1}{3}\).

∴ \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=1\times\dfrac{1}{3}=\dfrac{1}{3}\).

If \(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\) is a continuous function at x = 0, then the value of k is:

  1. 2
  2. \(\dfrac12\)
  3. 1
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Limit and Continuity Question 15 Detailed Solution

Download Solution PDF

Concept:

Definition:

  • A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
  • f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).


Calculation:

For x ≠ 0, the given function can be re-written as:

\(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\)

Since the equation of the function is same for x < 0 and x > 0, we have:

\(\rm \displaystyle \lim_{x\to 0^+}f(x)=\lim_{x\to 0^-}f(x)=\lim_{x\to 0}\frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}\)

\(\rm \displaystyle \lim_{x\to 0}\frac{2- \frac {\sin^{-1} x} x}{2 +\frac {\tan^{-1} x} x} = \frac {2-1}{2+1} = \frac 1 3\)

For the function to be continuous at x = 0, we must have:

\(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\)

⇒ K = \(\dfrac{1}{3}\).

Get Free Access Now
Hot Links: teen patti customer care number teen patti gold new version 2024 teen patti live